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We examine linear and quasiliner stages of Cherenkov-drift instability developed in the relativistic magne-
tized electron-positron plasma penetrated by ultrarelativistic beam of electrons~or positrons!. The plasma flow
is streaming along the slightly curved magnetic field lines. In this case, the curvature drift of beam particles
plays a decisive role in the development of the instability. A quasilinear relaxation of Cherenkov-drift insta-
bility leads to diffusion of resonant particles in momenta space. The expressions for diffusion coefficients of
Cherenkov-drift instability are obtained. The numerical estimations are carried out for the parameters of
relativistic magnetized plasma of pulsar magnetospheres providing a test of validity of the approximations used
in our approach.
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I. INTRODUCTION

Cherenkov-drift instability was suggested by Kazbe
Machabeli and Melikidze@1–4# as a possible mechanism fo
the generation of pulsar radio emission and later it was
proved in Ref. @5#. In those works the linear theory o
Cherenkov-drift instability was developed. It was show
that due to Cherenkov-drift instability in pulsar magne
spheres the orthogonally polarized plasma waves are exc
These waves can escape from the magnetosphere and
an observer as a pulsar radio emission. The necessary c
tion for the development of Cherenkov-drift instability~as
for an usual Cherenkov instability! is a presence of a beam o
particles in the relativistic magnetized pair plasma~consisted
of relativistic electronse2 and positronse1).

Generally, Cherenkov type instabilities develop due to
resonant interaction between waves and particles of a be
The resonance occurs, when the electric field vectorE and
the wave vectork of generated waves have got compone
along direction of the beam velocityv (E•vÞ0 and k•v
Þ0). As follows, the transverse waves (E'k), propagating
along the external magnetic field (B0ik), cannot be gener
ated by the usual Cherenkov instability~because it develop
on the beam particles moving along the external stra
magnetic field lines:viB0 andE•v50).

Cherenkov-drift instability develops when the beam p
ticles move along slightly curved magnetic field~SCMF!
lines and, hence, drift across the plane where the curved
lie. The drift motion of the beam particles provokes the ge
eration of a purelytransverseas well as thelongitudinal-
transversewaves.

Generally there are two most important effects caused

*Also at Center for Plasma Astrophysics, Abastumani Astroph
cal Observatory, Al. Kazbegi Ave. 2a, Tbilisi 380060, Georgia.
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the particle relativistic motion along the SCMF line: curv
ture drift and curvature radiation. The drift velocity is d
rected across the plane of the SCMF lines and is given by
following expression:

ud5
gv i

2

vBRB
. ~1!

HerevB5qB/mc is the cyclotron frequency of a particle o
chargeq and massm; RB is the curvature radius of the mag
netic field line;g is a Lorentz factor of a particle;c is the
speed of light andv i is the component ofv along the mag-
netic field line. Ifg@1, the value of drift velocityud can be
significant. Let us note that electrons and ions are drifting
opposite directions.

A single particle, moving along the curved magnetic fie
line, radiates so called curvature radiation which can be e
ily described as a synchrotron radiation in an effective m
netic field ~see, e.g., Ref.@6#!. In 1975 Blandford@7# inves-
tigated the curvature radiation of plasma flowing along
SCMF lines. The problem was studied in the limit of infini
magnetic fieldB0→`, and it was shown that there is n
radiation at all: the waves, radiated by each particle, are
sorbed by another one. This result was confirmed late
papers@2,8,9#. Although in the paper by Asseo, Pellat, an
Sol @10#, the possibility of the waves excitation was show
but the curved field-aligned beam was assumed to be finit
extend and immersed in the external plasma or vacuum h
ing a sharp boundary at the edge. If the plasma flow has z
width, the instability is reduced to that of Goldreich-Keele
@11#.

The necessity of taking into account the drift motion f
the analysis of the reabsorption of curvature radiation w
emphasized in Refs.@9,12,13#. Actually, Chugunov and
Shaposhnikov@13# were the first who demonstrated that th
particle beam drifting across the curved magnetic field lin

i-
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is capable of amplifying electromagnetic radiation~the effect
of maser curvature emission!. The authors applied the resu
for pulsar magnetospheres and suggested the maser curv
emission as a mechanism of a pulsar radio emission.
problem was solved formonoenergeticbeam of electrons
which means that all particles ‘‘felt’’ the waves of one an
the same phase. It seems reasonable to suppose, that
setting of the problem has only theoretical interest: existe
of strongly monoenergetic beam in plasma of pulsar m
netospheres is far from reality. Moreover, the effective wa
particle interaction~i.e., negative reabsorption! should be
problematic, if the beam particles’ distribution function h
not a smooth slope in its shape. The monoenergetic b
results in a very narrow resonance width, (v2kv)→0.
Thus, the growth rate of the excited waves will be insign
cant@9#. The authors consider electromagnetic waves hav
the maximum frequency equal to that of single particle c
vature radiation,vc;cg/RB . However, in order to resolve
the spectra of the waves, generated by the instabilities,
plasma collective processes should be taken into acco
The mechanism of maser curvature radiation is based on
mechanism of a single particle curvature radiation and d
not consider the effects of wave-particle interaction. Tha
why the viability of the application of maser curvature rad
tion to pulsars remains uncertain.

The development of Cherenkov-type instability, includi
the curvature drift velocity of the beam was studied and
growth rate was calculated in Refs.@1,2,4,14–18#. These re-
sults were confirmed later after a thorough investigation
the problem in Refs.@5,19#. The instability was called a
Cherenkov-drift instability. Let us mention that the presen
of the curved magnetic field lines is the necessary condi
for both the Cherenkov-drift radiation in plasma and t
single particle curvature radiation in vacuum. However,
Cherenkov-drift radiation cannot be interpreted as a ‘‘plas
curvature radiation,’’ analogous to the single particle cur
ture radiation: a single particle radiates even for the infin
intensity of magnetic field, whenB0→` and the drift veloc-
ity (ud}1/B0) vanishes in this limit. In contrast, th
Cherenkov-drift radiation is not generated ifud'0. More-
over, the single particle radiates the vacuum wave, while
Cherenkov-drift instability generates the proper modes of
medium~i.e., relativistic electron-positron plasma!. This par-
ticular point was not considered by Blandford@7# and Mel-
rose @8#. Polarization of these waves strongly differs fro
that of vacuum waves.

A brief examination of the linear theory of Cherenko
drift instability is discussed in Sec. II. In Sec. III the quas
linear equations for the Cherenkov-drift instability are o
tained. Validity of the approximations, using for the analy
of the quasilinear equations, is examined for the plasma
rameters of typical pulsar magnetospheres. In Sec. IV c
ficients describing the diffusion of particles in momentu
space are evaluated. Alteration of plasma distribution fu
tion is studied. The results are summarized in Sec. V.

II. THE LINEAR THEORY

Properties of magnetized relativistic electron-positr
plasma penetrated by a beam of ultrarelativistic partic
02640
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were carefully investigated in a series of works@20–23# and
are still the subject of concern@24,25#. The strong magnetic
field constrains plasma motion in parallel direction to ma
netic field lines. The electrons and positrons lose their p
pendicular energy rapidly due to synchrotron radiation a
are assumed to be in their lowest Landau orbitals. He
their motion is essentially one dimensional along the fi
lines. In our particular case, we consider that the magn
field exhibits a weak inhomogeneity

1

B0

]B0

]R
!

1

L
, ~2!

implying that the characteristic length scale (L) of the sys-
tem is considerably less then the characteristic dimension
the magnetic field inhomogeneity. To put it in another wa
the plasma flow is streaming along the SCMF lines the lo
torsion of which can be neglected:

RB@L. ~3!

In doing that thelocal spatial inhomogeneities of the mag
netic field and the plasma flow are of no importance belo

The dielectric permittivity tensor,e i j (v,k), for such a
medium was derived in Ref.@3#. The problem was consid
ered in cylindrical coordinates, (x, r , w). The x axis is di-
rected perpendicularly to the plane of the magnetic field c
vature~the positive direction ofx axis is chosen toward the
drift of electrons! while r and w are the radial and the azi
muthal coordinates, respectively~see Fig. 1!. Hence,w com-
ponent of a vector is parallel to the magnetic field line.

The electron-positron plasma differs from the electron-
plasma by lack of gyrotropy. Consequently, spectra of wa
propagating in thee2e1 plasma is simpler than that in th
electron-ion plasma. It consists of only four types of wav
that correspond to four branches on the diagramv(k), where
v is the wave frequency~see Fig. 2!.

One of them is high-frequency transverse electromagn
wave totally located in superluminal area. Its phase veloc

FIG. 1. The cylindrical frame of reference (x, r , w) and a local
Cartesian frame of reference (x, r , y). The x axis is directed up
from the plane of the figure~the positive direction is chosen towar
the drift of electrons!. B0 is the external magnetic field;RB is the
radius of curvature of a magnetic field line.
7-2
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QUASILINEAR THEORY OF CHERENKOV-DRIFT INSTABILITY PHYSICAL REVIEW E67, 026407 ~2003!
vph5v/k exceeds the speed of lightc, hence, it is not of
interest in our discussions below.

The second branch represents the dispersion of a pu
transversed linearly polarized electromagnetic wave. T
dispersion of this wave is described by the following equ
tion:

v0
t 5kc~12d!, ~4!

~whered5vp
2/4vB

2gp
3 ; vp

254pq2np /m is plasma Langmuir
frequency!. We call this dispersion curve ast mode. It is
totally located in subluminal area, and therefore could
generated by particles of a beam. Its electric field vectorEt is
perpendicular to the plane of wave vector and external m
netic field (k,B0).

The remaining two dispersion curves on thev(k) dia-
gram describe the longitudinal-transverse waves propaga
in relativistic e2e1 plasma. One of them is almost superl
minal. This wave is purely longitudinal if it propagate
strictly along the magnetic field line (kiEiB0), and, in this
case called Langmuir wave associated with longitudinal
cillations of the charge density. If an angleq'k' /ki be-
tweenk andB0 increases (k' andki are the components o
wave vector across and along the magnetic field line, res
tively!, the component ofE starts to grow acrossk: Lang-
muir wave transforms to the longitudinal-transverse wa
denoted asl t 2 mode in Fig. 2. If the angleq is small enough,
q<q0;Ad, l t 2 mode is almost longitudinal and cross
v5kc line. In this case,l t 2 mode can be excited if the Che
enkov resonance conditionv5kiv i fulfills. However, for the
resonant particles of primary beam, the growth rate of
instability is very small@26#. The wave leaves from the in
teraction area so quickly that no time is left for significa
amplification of the wave. In the case of oblique propagati
q.q0 , l t 2 mode is totally superluminal. Therefore,l t 2
mode could not be generated at all by particles of a bea

FIG. 2. Dispersion curves of the waves in the relativistic ma
netized electron-positron plasma. The solid line corresponds
v5kc. It divides the plane (v,kc) into superluminal and sublumi
nal areas. The high-frequency branch oft waves~in the superlumi-
nal area! is defined as high-frequency~HF! mode. Low-frequency
and high-frequency modes ofl t waves are defined asl t 1 and l t 2

modes, respectively.
02640
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Another longitudinal-transverse wave is denoted asl t 1
mode in Fig. 2. Dispersion equation of this mode is the f
lowing:

v0
l t5kicS 12d2

k'
2 c2

16vp
2gp

D . ~5!

This mode, liket wave, is located totally in subluminal are
and can easily be generated by plasma particles. Its ele
field vectorEl t is located in (k,B0) plane. Thel t 1 mode is
vacuum wave if it propagates along the magnetic field lin
(kiB0). Its dispersion curve merges witht mode~see Fig. 2!
and can be arbitrarily polarized. In the case of oblique pro
gation, electric field ofl t 1 wave has the componentEi

l t along
the external magnetic field, thereby involving plasma p
ticles in longitudinal oscillations.

Generation ofl t 1 mode, propagating perpendicular to th
plane of SCMF lines, is connected with the drift motion
the particles. These waves are also known asdrift waves
@2,27,28#.

It should be mentioned that, while describing the waves
relativistice2e1 plasma, some authors sometimes use ter
nology which, in our opinion, appears to be misleading. F
example, since the work by Arons and Barnard@22#, the
superluminal longitudinal-transverse wave (l t 2 mode! was
called an ordinary~O! mode, the subluminal transverse wa
(t mode!—an extraordinary~X! mode and the sublumina
longitudinal-transverse wave (l t 1 mode!—an Alfv́en mode.
However ‘‘ordinary’’ and ‘‘extraordinary’’ are generally re
lated to the waves propagating across the external magn
field in the usual electron-ion plasma@29#. Moreover,t wave
~the so calledX mode! is the purely transverse wave and i
analog does not exist in the electron-ion plasma. As for
Alfv́ en mode, in electron-ion plasma such a name is used
an almost linearly polarized, transverse electromagn
wave with frequencyv!vBi

~where vBi
is the cyclotron

frequency of ions!. In the case ofk→` and v&vBe
, the

v(k) curve splits into two branches describing dispersions
~a! right-hand polarized electron-cyclotron waves with fr
quency v'vBe

and ~b! left-hand polarized ion-cyclotron

waves with frequencyv'vBi
. Therefore, in relativistic

e2e1 plasma, we prefer to call the dispersion curvest, l t 2,
and l t 1 modes, respectively, hence avoiding a possible c
fusion with dispersion curves in electron-ion plasma.

In the papers by Kazbegiet al., @2–4#, it was shown that
t and l t waves could be generated by particles of the be
when the following resonance condition is satisfied:

v2kwvw2kxud50. ~6!

For transverse~4! and longitudinal-transverse~5! plasma
waves the resonance conditions can be written as follow

S 2d2
kr

2

kw
2 D 5S ud

c
2

kx

kw
D 2

~7a!

and

-
to
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S ud

c
2

kx

kw
D 2

5S 2d1
k'

2 c2

8vp
2gp

1
kx

2

kw
2 D , ~7b!

respectively@27#.
If the above conditions~7! are fulfilled, we can estimate

the resonance value of emission beam width (q'k' /ki) as

q0'
u0

c
, ~8!

whereu0 is the resonant value ofud . The expressions for the
resonant frequency and the growth rate of excited waves
be written as follows:

v05
cg0vb

u0gT
3/2

, ~9!

G05
p

2

vb
2

v0

g0

gT
2

A, ~10!

where A5(kr /k')2 for t-waves andA5(kx /k')2 for l t
waves; gT and vb are thermal spread and Langmuir fr
quency of resonant particles of the beam, respectively. Th
expressions were obtained in papers@1,4,15#. As for the
growth rate of the drift wave, it was obtained in paper@2#,

Gd5
vb

vp
S 3

2

gp
3

g0
D 1/2

kxu0 . ~11!

The reason for generation oft, l t , and drift waves is the
presence of the beam in the relativistic pair plasma, altho
the waves cannot be excited without the drift motion of p
ticles. Indeed, expressions~10! and ~11! are equal to zero if
ud50. All those waves are purely or almost transve
waves. Fort andl t 1 waves the electric field vector is perpe
dicular to the external magnetic field@see Eq. 10#. As for the
waves generated by the usual beam instability, both t
electric field vectorE and the wave vectork are directed
along the external magnetic fieldB0.

In the following section we study the quasilinear equ
tions which significantly differ from those of the usual bea
plasma instability.

III. QUASILINEAR EQUATIONS

To study the quasilinear theory of Cherenkov-drift ins
bility, we use the collisionless kinetic equation of the follow
ing form:

] f

]t
1v

] f

]r
1

]

]p F q

mcS E1
p3B

g D f G50, ~12!

where f [ f (r ,p,t) is the distribution function of the par
ticles.

According to the standard scheme, in order to obtain a
of quasilinear equations, distribution function as well as el
tric and magnetic field vectors have to be divided into
main and oscillating parts:f (r ,p,t)5 f 0(p,mt)1 f 1(r ,p,t),
02640
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E(r ,t)5E1(r ,t), andB(r ,t)5B0(mt)1B1(r ,t). Then, aver-
aging equation~12! over fast oscillations and assumin
^ f 1&5^B1&5^E1&50, ^ f 0&5 f 0, and f 0@ f 1, the following
equations can be obtained:

] f 0

]mt
52 K q

mc

]

]p S E11
p3B1

g D f 1L [QL, ~13a!

] f 1

]t
1

cp

g

] f 1

]r
1

q

mcS p3B0

g D ] f 1

]p
52

q

mcS E11
p3B1

g D ] f 0

]p
.

~13b!

Here^•••& denotes averaging over fast oscillations;]/]mt is
a slow time derivative (m!1). The slow local spatial varia
tions of f 0 andB0 are neglected within the length scale of th
systemL @see Eqs.~2! and~3!#. Equation~13a! describes the
back reaction of generated waves upon the nonperturbed
tribution function f 0. In order to calculate the quasilinea
term QL it is enough to substitute the solution of Eq.~13b!
into Eq. ~13a!. The solution of Eq.~13b! in the Fourier pre-
sentation,

f 1~r ,p,t !5
1

~2p!3E f k~p!exp~ ik"r2 ivkt !dk, ~14!

reads

f k~p!52
q

mcE2`

t

dt8exp@ ik•r2 ivkt#FEkS 12
p8

g
•

kc

vk
D

1
~Ek•p8!

g

kc

vk
G ] f 0

]p8
, ~15!

wherevk[v(k)1 iGk ; r5r 82r , andt5t82t. Then, per-
turbed electric field vectorE1 is substituted for perturbed
magnetic fieldB1 using Maxwell equationBk5(c/vk)(k
3Ek) for the Fourier transforms:

E1~r ,t !5
1

~2p!3E Ek exp~ ik•r2 ivkt !dk;

B1~r ,t !5
1

~2p!3E Bk exp~ ik•r2 ivkt !dk. ~16!

In order to findf k(p), we are using a standard method
integration along nonperturbed trajectories. Following t
method, in Eq.~15! (r 8,p8) are phase coordinates of th
particle ~along the nonperturbed trajectory! at the instant of
time t8; they are calculated from the relativistic equations
motion of a single particle:

dr 8

dt8
5

c

g
p8, ~17a!

dp8

dt8
5

q

mcS p83B0~r 8,t8!

g D . ~17b!
7-4
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QUASILINEAR THEORY OF CHERENKOV-DRIFT INSTABILITY PHYSICAL REVIEW E67, 026407 ~2003!
Using a cylindrical frame of reference, the nonperturb
magnetic field is modeled asB05B0(0, 0,Bw). However, as
we mentioned above, local description allows to neglect
sion of the curve magnetic field lines@see Eq.~3!#. So we can
switch to a local Cartesian frame of reference, where cy
drical w coordinate is measured alongy axis, parallel to a
local magnetic field direction~see Fig. 1!. This approach is
valid to study the Cherenkov-drift instability, if the area
wave-particle interaction~that can be taken as a character
tic scale length of the system,L) is greater than the length o
excited waves,l;c/G0:

q0RB*
c

G0
. ~18!

Condition~18!, as well as condition~3!, are well satisfied
for the parameters of plasma of typical pulsar magne
spheres. The electron-positron plasma of pulsar magn
spheres consists of mainly two components: a bulk plasm
particles with low Lorentz factors (gp;3 – 10) and a beam
of primary particles ejected from the stellar surface with L
entz factorsgb;106–107. A number density of the beam i
nb;nGJ , wherenGJ is the so called Goldreich-Julian den
sity. A number density of a bulk plasma isnp (np /nb;S,
where S;102–107 is the Sturrock ‘‘multiplication factor’’
@30#!. At Cherenkov-drift instability, developed in typica
pulsar magnetospheres, whereRB'109 cm, the opening
angle of excited wavesq0 reaches the values'0.06–0.1
@see Eq.~7!# andG0'63102–103 s21 @assumingA'1 and
gT'104 in Eq. ~10!#. The instability develops at the dis
tances R'0.5RLC–0.8RLC from the pulsar, whereRLC
5cP/2p is the radius of light cylinder andP is the period of
pulsar rotation. For typical pulsars (P51 sec) RLC'5
3109 cm. The value of dipolar magnetic field is estimated
B5Bs(Rs /R)3 and equal toB'20–60 G in the area wher
the instability develops~hereBs;1012 G is the value of the
magnetic field at the surface of a pulsar with a radius of
order ofRs;106 cm). In such a magnetic field the cyclotro
frequency of a relativistic electron isvB'33108–109 s21

and, consequently, the drift velocity of the resonant partic
of a beam~with g0;106) obtains the values of the order o
u0 /c;1022–1021. Substituting the resonant values of p
rameters~8!–~10!, condition~18! can be written in the form
useful for estimations in magnetized relativistic plasma,

RB

c

vB
2

vb

gT
1/2

g0
2

,1. ~19!

The set of equations of motion~17! is solved using the
approximation of locally straight field lines, although it
taken into account that the particles undergo the drift w
characteristic velocityud @see Eq.~1!#. Using the geometry
shown in Fig. 1, the relativistic equation of motion~17b! is
rewritten as the following set of equations:

dpx8

dt8
2ṽBpr850,
02640
d

r-

-

-

-
to-
of

-

s

e

s

h

dpr8

dt8
2pw8

dw8

dt8
1ṽBpx850,

dpw8

dt8
1pr8

dw8

dt8
50, ~20!

where ṽB5vB /g. Ignoring the terms proportional to th
small parameter r L /RB'v'ud /c2!1 @where v'

2 5(vx

2ud)21v r
2 and r L5v' /ṽB is the radius of Larmor circle#

and assuming thatpw
2@(pr

21px
2), we can obtain the solu

tions of set of Eqs.~20! as was done in Ref.@17#:

px85pd1pr sin~ṽB t!1~px2pd!cos~ṽBt!,

pr85pr cos~ṽBt!2~px2pd!sin~ṽBt!,

pw85pw . ~21!

Here the components of dimensionless momentum (px , pr ,
pw) are the values of (px8 , pr8 , pw8 ) at the instant of timet8
5t, and pd5(ud /c)g. We have the following integrals o
motion: g,px82(ṽBr 8/c)g,r 8pw8 . Let us notice that the par
ticle distribution functionf 0 should only depend on the inte
grals of motion.

It is evident that the solutions of equation of motion~21!
differ from those in the homogeneous magnetic field~with
straight magnetic field lines! only by the drift componentpd .
On the basis of straight magnetic field approximation,
can locally accept cylindrical coordinates in momentu
space (pi ,p' ,u) as well. Subscripts ‘‘i ’’ and ‘‘' ’’ denote
parallel and perpendicular directions to the magnetic fi
B0, respectively,

p' cosu5px2pd ,

p' sinu5pr .

Therefore, Eqs.~21! are reduced to the following form:

px85pd1p' cos~u2ṽBt!,

pr85p' sin~u2ṽBt!,

pw85pi . ~22!

Substituting Eqs.~22! into Eq.~17a!, we obtain the following
expressions forr5r 82r :

rx5
cpd

g
t2

cp'

g

1

ṽB

@sin~u2ṽBt!2sinu#,

r r5
cp'

g

1

ṽB

@cos~u2ṽBt!2cosu#,

rw5
cpi

g
t. ~23!
7-5
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On the basis of the same assumptions, we can accept t
lational symmetry of the system as well and substitute
pressions~22! and ~23! for the components ofr and p8 in
Eq. ~15! ~see also Ref.@5#!. Hence, we finally obtain the
Fourier transform of oscillating distribution functionf k(p):

f k~p!52S q

mcD i exp@ ib sin~u2f!#

Dvk
F] f 0

]pi
S Ei~k!

1
kic

vk

pd

g
Ex~k! D1

] f 0

]p'
S Ei~k!

2pd cosu

g

1
kic

vk

pd

g
Ex~k!

2pd cosu2p'

g D G , ~24!

where Dvk[vk2kiv i2kxud . Calculating expression~24!
from Eq. ~15!, we used the following presentation of th
exponential function:

exp@ ik•r2 ivkt#5exp@ ib sin~u2f!# (
n52`

`

EnJn~b!.

~25!

HereEn[exp@in(f2u)2it(Dvk2nṽB)#; Jn(b)(n50; 61;
62 . . . ) is theBessel function of integer order@31#;

b5k'r L ~26!

andf is defined as follows:

kx5k' cosf,

kr5k' sinf. ~27!

In the derivation of Eq.~24!, we have taken into account tha
b!1 and kept only the first order terms in the expansions
Jn(b). Then we consider thatn50 in Eq. ~25!, since this
approximation leaves only the terms describing the contri
tion of Cherenkov-drift resonance. Let us mention th
(] f 0 /]u)50 since the distribution function possesses
axial symmetry. Therefore, the corresponding terms do
contribute into Eq.~24!.

IV. QUASILINEAR DIFFUSION

The next step is to study the alteration of slowly varyi
part of distribution functionf 0(p,mt) due to the develop-
ment of Cherenkov-drift instability. Generally, an alterati
is described by diffusion coefficients involved in the qua
linear term. The coefficients show the rate of particle dif
sion in momentum space along, as well as across, the m
netic field. Substituting Eq.~24! into Eq. ~13a! and using
Maxwell equation for Fourier transforms, we obtainQL term
in the following form:
02640
ns-
-

f

-
t
n
ot

-
-
g-

QL[2
q

mcK ]

]p S E11
p3B1

g D f 1L
5

]

]pi
S D ii

] f 0

]pi
D1

]

]pi
S p'D i'

] f 0

]p'
D

1
1

p'

]

]p'
S p'

2 D'i
] f 0

]pi
D1

1

p'

]

]p'
S p'D''

] f 0

]p'
D .

~28!

Here D ii , D i' , D'i , and D'' are diffusion coefficients.
Below we calculate some particular expressions for diffus
coefficients corresponding tot and l t waves in the case o
Cherenkov-drift instability. Let us notice, that Eq.~28! has
rather general meaning and can be used for other typ
instabilities as well. However, the diffusion coefficients w
be different for different instabilities.

It is convenient to consider quasilinear development ot
and l t waves separately. If we assume that these waves
purely electromagnetic (E'k), then the following relations
between components of electric field and wave vector can
written as

Ei50, Exkx52Erkr , ~29!

for t waves and

Exkr5Erkx , Eiki52Exkx , ~30!

for l t waves~if kx@kr). Using Eqs.~29! and ~30! we can
write the diffusion coefficients fort and l t waves as:

D ii5E
2`

`

U i
2 I~k! dk; ~31a!

D''5E
2`

`

U'
2 I~k! dk; ~31b!

D i'5D'i50, ~31c!

where we use the following definitions:

U i
25S kic

vk

pd

g D 2

, U'
2 5

kic

vk
S pd

g D 2S 12
kic

vk
D , ~32a!

for transverset waves;

U i
25S kic

vk

pd

g
1

kx

ki
D 2

,

U'
2 5S kic

vk

pd

g
1

kx

ki
D S pd

g
1

kic

vk

kx

ki
D S 12

kic

vk
D , ~32b!

for longitudinal-transversel t waves;

I~k![ i
1

Dvk
S q

mcD
2 Ex~2k!Ex~k!

V~2p!3
. ~33!
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Note that equations for diffusion coefficients~31! along
with Eqs.~32! and ~33! are obtained after averaging the e
pression within bracketŝ•••& @see Eq.~13a!# over the angle
u. This procedure nullifies the diffusion coefficientsD i' and
D'i taking into account that the corresponding terms

]

]pi
S p'D i'

] f 0

]p'
D and

1

p'

]

]p'
S p'

2 D'i
] f 0

]pi
D

are smaller than the terms

]

]pi
S D ii

] f 0

]pi
D and

1

p'

]

]p'
S p'D''

] f 0

]pi
D

by a factor ofJ1(b)'b!1. In Eq. ~33!, Ex2(k) identifies
the complex conjugate to thex component of electric field
vectorEk , andV5*2`

` dr .
It is worth noting, that drift velocity~1! depends on Lor-

entz factors of the particles,g. Hence, thermal spread in th
Lorentz factors of resonant particles (gT5ug2g0u) results in
the scatter of drift velocities, increasing the resonant width
instability, Dv5v2kiv i2kxud . It allows to consider the
kinetic approximation of Cherenkov-drift instability. How
ever, the resonant width of usual Cherenkov instability
smaller than the corresponding width of Cherenkov-drift
stability. Therefore, in the case of the presence of nar
relativistic beam~with low value ofgT), the kinetic approxi-
mation for usual Cherenkov instability is not valid. Th
growth rate of the instability,Gk , is small for hydrodynamic
approximation as well. Therefore usual Cherenkov insta
ity, as opposed to Cherenkov-drift instability, cannot deve
in relativistic magnetized pair plasma@23,26#.

Particle diffusion in momentum space appears in both p
allel and perpendicular directions with respect to the m
netic fieldB0. The diffusion causes an alteration of partic
distribution function until the quasilinear relaxation of inst
bility is saturated (] f 0 /]mt50, wheref 0 is the distribution
function of resonant particles!. In order to investigate the
quasilinear relaxation off 0, it is worth to rewrite Eq.~13a! in
the following form:

] f 0

]mt
5

]

]pi
S D ii

] f 0

]pi
D2

1

p'

]

]p'

p'S D''

] f 0

]p'
D . ~34!

It is easy to find out that the diffusion coefficients, in som
sense, define the rate of alteration off 0. To estimate the
values ofD ii andD'' for the plasma parameters of typic
pulsar magnetospheres, we rewrite Eqs.~31! in the following
simplified form:

D i ,'.8p U i ,'
2 S q

mcD
2 W

G
, ~35!

where U i
2'(ud /c)2;1024 and U'

2 '(ud /c)4;1028; the
energy of excited waves is aboutW/Wp;1022, whereWp
[mc2npgp ; np'33108 cm23; gp'3. Finally, we obtain
that D ii;1010 s21 andD'';106 s21.
02640
f

s
-
w

l-
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-

Assuming thatkic;vk , kx /ki;pd /g and (12kic/vk)
;(pd /g)2 in Eqs.~32!, we can rewrite Eq.~34! as follows:

] f 0

]mt
5F ]

]pi
S pd

g D 2] f 0

]pi
1

1

p'

]

]p'

p'S pd

g D 4 ] f 0

]p'
G

3E
2`

`

gI~k!dk, ~36!

whereg51 for t waves andg54 for l t waves. The station-
ary state (] f 0 /]mt50) depends on relative importance b
tween right-hand terms in Eq.~36!. The ratio between the
terms describing parallel and perpendicular diffusions is
the order of;(p' /pd)2. Therefore, we can consider th
following two cases.

~a! p'@pd . In this case the first right-hand term in E
~36! significantly exceeds the second term. Hence, the q
silinear relaxation is saturated by plateau formation on p
allel distribution function of resonant particles (] f 0 /]pi
50).

~b! p'!pd . In this case the second right-hand term in E
~36! appears significant. The quasilinear relaxation cau
energy transfer from parallel flow to the perpendicular m
tion of the particles, hence increasingp' . The relaxation
will be saturated whenp';pd . This is the case when bot
right-hand terms in Eq.~36! are of the same order and, con
sequently, cancel each other~here, we are bearing in mind
that in the resonance region the beam particle distribu
function has a negative slope of] f 0 /]p',0).

These results are natural: back reaction of excited wa
over resonant particles should suppress the reason of w
excitation. In the case of Cherenkov-drift instability, it caus
the plateau formation on the distribution function of paral
momenta~similar to the case of quasilinear relaxation
usual Cherenkov instability! and energy transfer from para
lel flow of particles to their motion across the magnetic fie
The later process, inhibits an anisotropy in momentum sp
It is similar to the quasilinear relaxation of cyclotron inst
bility @32#. @The reason for development of cyclotro
instability—anisotropy in momentum space (p'!pi)—is
suppressed by particle diffusion over perpendicular m
menta. As a result, the energy of parallel motion of the be
particles is transferring into the perpendicular energy u
p';pi.]

V. CONCLUSION

In summary, we conclude that the development
Cherenkov-drift instability causes the diffusion of beam p
ticles ~confined to one-dimensional motion along the stron
slightly curved magnetic field lines! both acrossand along
the magnetic field lines. We take into account the curvat
drift motion and study the quasilinear theory of Cherenko
drift instability that reveals the perpendicular diffusion of th
resonant particles in momenta space. The expressions
diffusion coefficients are obtained and their values are e
7-7
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mated for the plasma parameters of typical pulsar magn
spheres. The numerical value of coefficients provide the
of alteration of distribution function,f 0 @see Eq.@~36!#. It is
shown that initially one-dimensional (p'→0) distribution of
beam particles is unstable relative to Cherenkov-drift ins
bility. The quasilinear relaxation inhibits an anisotropy off 0
increasing the transverse momenta,p' . Finally, the relax-
ation is saturated sincep';pd .

This scenario works if the other factors which can balan
the quasilinear diffusion are not taken into account. Su
factors could be, on one hand, the radiation reaction fo
~acting on synchrotron emitting particle, spiraling in stro
magnetic field! and, on the other hand, the force arising d
o

J.

t.

Po
il

J.

io

ic
s,

.
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to particle motion in weekly inhomogeneous field. We pl
to include these factors into consideration in future works

ACKNOWLEDGMENTS

G.Ma. thanks D. Melrose for stimulating discussion
D.Sh. and G.Ma. acknowledge hospitality of the Institute
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